Towards Intuitive Industrial Human-Robot Collaboration

System Design and Future Directions

Ferdinand Fuhrmann, Wolfgang Weiß, Lucas Paletta, Bernhard Reiterer, Andreas Schlotzhauer, Mathias Brandstötter
Outline

- Introduction
- State-of-the-art
- Background
- The CollRob Project
 - Models, Functionalities and Use Cases
- Outlook
Introduction

General

- Human-Robot-Collaboration buzz-word in I4.0
 - Industry prepares first use cases – with certain limitation

- What is Collaboration?
 - Combining skills and expertise to jointly achieve a goal
 - Collaboration very high-level process involving causal and non-causal cognitive activities
Introduction

Project **CollRob**

- 4-year funded research project
- 8 research groups involved
- **Aim 1:** Enable H-R Collaboration
 - Planning
 - Interaction
 - Safety
- **Aim 2:** design application scenarios
State-of-the-art (1)

Industrial point-of-view

- Availability of sensitive and lightweight robot arms which are safe enough to team with people
- Simple interactions between humans and robots
- Slow and therefore safe
- Little integration of the human aspects
- Implemented use cases
 - Collaborative assembly
 - Service robots
Recent advances in artificial intelligence topics
- Natural language understanding, machine vision
- Collecting, merging and analyzing vast amount of data
- Machine learning and deep learning
- Autonomous systems
- …

Progress in research on
- Social robots, assistant robots
- Intelligent personal assistant, virtual assistants
- Chatbots, Spoken dialog systems

Availability of autonomous and intelligent consumer products
- Amazon Alexa, Siri, Cortana, …
- Pepper (SoftBank), Sony AIBO, …
- … and many more
Collaboration

- Concepts and models for H-H collaboration extensively researched by psychology
- Basic characteristics of collaboration [1]
 - Shared activity
 - Joint intention
 - Common ground
- Shared cooperative activity features:
 - Mutual responsiveness
 - Commitment to the joint activity
 - Commitment to mutual support

A New Framework for Human-Robot-Collaboration

High-level CollRob Model

- Interaction
- Negotiation
- Communication
- Trusworthiness
- Persuasion
- Coordination
- Perceptiveness

HRC
Human-Robot-Interaction

- Intuitive Interaction
 - Natural Interaction is multimodal: Speech, Gaze, Gesture, ...
 - Coupled Modalities: More natural, More robust!
 - Context-sensitive feedback: relevant information!

- Human-Factors
 - Situation Awareness
 - Stress
Modelling HRI

- Enabling intuitive Interaction and Communication
- Plan and decide what to communicate through which channel

- Theory-of-mind models
 - Is the human relaxed or stressed?
 - Is she focused on her task?
 - Does she know if I finished my task?
 - Is the human aware of the goal and the steps how to reach the goal?
Planning for Collaborative Agents

- Domain-independent planning towards collaborative autonomy
 - Knowledge is updated by sensor data
 - Find actions for human-robot team to solve current problem

- Specific challenges in collaborative systems
 - Dynamic environment
 - Safety
 - Interaction
Safety Aspects in Human Robot Collaboration

- Integrity of human health
- Safety in mobile manipulation and dynamic environments
- Ergonomics of work places
- No safety without security

Safety verification by measuring the biomechanical load regarding ISO/TS15066
Targeted Use Cases

- Building collaboratively tangram figures as a representative for an assembly task in the industry
 - One Person and one serial manipulator
 - Sharing a common workspace
 - Working at the same time

- A sensitive mobile manipulator
 - Delivering parts to workplaces
 - Moving area is shared with other humans
Evaluation of HRI:
Human factors study on situation awareness

- 12 participants, moderated, dual task:
 - **Primary task**: Read aloud (up to 6 pages at laptop),
 - **Secondary task**: timed hand-over (domino brick)
 - **Robot cycle** until hand-over event (cycle duration 18-26 sec.)
 - OptiTrack mocap, eye tracking glasses 30 Hz, ABB Yumi robot, gripper, ROS synchronisation

- **Results**:
 - Real-time eye movement analysis
 - Attention features correlate with SAL
 - Classification of SAL with \(\approx 92\%\) accuracy
 - Prediction of HRI performance \(\approx 80\%\)
Next Research Questions

- Which granularity of communication between the human and the robot is needed to keep the human informed but not distracted from his work?
- How can the intention of the robot to the human be communicated to reduce (nearly) collisions between the agents and improve the performance of assembling parts?
- Which factors influence stress and perceived trustworthiness?
- How can the risk (of a collision) between the agents be described and predicted?
- Optimizing task planning for human robot teams when interaction results interfere the current plan
Acknowledgements

This research was funded by the Austrian Ministry for Transport, Innovation and Technology (BMVIT) within the framework of the sponsorship agreement formed for 2015 - 2018 under the project CollRob.